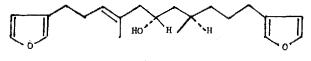
TETRADEHYDROFUROSPONGIN-1, A NEW C-21 FURANOTERPENE FROM A SPONGE

R. Kazlauskas, P.T. Murphy, R.J. Quinn and R.J.Wells

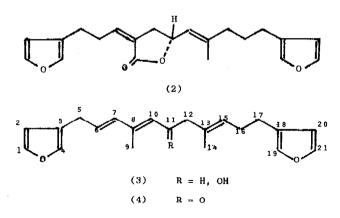
Roche Research Institute of Marine Pharmacology, P.O. Box 255,

Dee Why, N.S.W. Australia 2099


(Received in UK 17 February 1976; accepted for publication 7 March 1976)

The presence of C_{21} degraded furancterpenes in the closely related Mediterranean sponge species <u>Spongia officinalis</u>, <u>S. nitens</u> and <u>Hippospongia communis</u> has been reported ¹⁻³. Furospongin-1 (1) exemplifies the compounds obtained from <u>S. officinalis</u> and <u>H. communis</u>^{1,2} and nitenin (2), containing an extra lactone function, was obtained from <u>S. nitens</u>³. Minor metabolites with oxidised furan rings have also been reported⁴.

Extraction of a freeze dried sample of an Australian <u>Spongia</u> species, collected near Sydney, with cold petroleum ether yielded 1% of tetradehydrofurospongin-1 (3) as an air and light sensitive oil, by rapid silica gel chromatography.


The molecular formula $(C_{21}H_{26}O_3, M^+326)$ of (3) was established by high resolution mass spectrometry and major fragment ions were revealed at m/e 81, 95, 97, 150, 170 and 308. The i.r. spectrum demonstrated the presence of an alcohol ($v \max 3400 \text{ cm}^{-1}$) and (3) could be oxidised to the ketone (4) $(C_{21}H_{24}O_3, M^+324)$ in 55% yield by a brief treatment with a slight excess of Jones reagent in acetone. The ready uptake of three moles of hydrogen when (3) was shaken with 5% Pd/C established the presence of three double bonds.

The 100 MHz. ¹H n.m.r. spectrum of (3) in carbon tetrachloride showed resonances fully in accord with the proposed structure as follows⁵:- δ 7.25-7.10 (3H,m) and 7.10 (1H, bs.) attributable to a-furan protons; 6.36 (1H, bs; C₂-H); 6.12 (1H, bs; C₂₀-H); 6.13 (1H, d, J=15Hz; C₇-H); 5.80 (1H, d of triplets, J=15 Hz, 7 Hz; C₆-H); 5.12 (1H, bd, J=7.5 Hz; C₁₀-H); 5.16 (1H, bt; C₁₅-H); 4.30 (1H, m; C₁₁-H); 2.75 (2H, bd, J=7 Hz; C₅-H); 1.64 and 1.60 (3H each, bs; C₁₄-H and C₉-H). Other resonances occurred between δ 2.5 and 2.0. Many of the assignments were supported by double resonance studies. Irradiation of the doublet of triplets at δ 5.80 collapsed the broad doublet at δ 2.75 to a broadened singlet; also irradiation at δ 4.30 collapsed the broad doublet at δ 5.12 to a singlet and a singlet also appeared at δ 2.05. The mass spectral data also supported this structure and prominent peaks at m/e 150 and 176 were readily explained by a McLafferty re-arrangement of (3) with transfer of the OH proton to C₁₅ and cleavage of the C₁₁-C₁₂ bond.

s	1		٦.	
١	-	-	1	

1331

The ¹H n.m.r. spectrum of (4) supported the proposed structure. The α -furan protons were observed between $\delta7.30-7.10$ and two β furan protons appeared at $\delta6.40$ and 6.15. Other resonances were as follows :- $\delta6.22$ (1H,d,J=15Hz, C_7 -H); 6.01 (1H,s; C_{10} -H); 5.75 (1H, d of triplets, J=15 Hz, 7Hz; C_6 -H); 5.20 (1H, bt; C_{15} -H); 2.95 (2H,s; C_{12} -H); 2.87 (2H,d,J=7Hz; C_5 -H); 2.5-2.1 (4H,m; C_{16} -H + C_{17} -H); 2.10 (3H,s; C_9 -H); 1.57 (3H,s; C_{14} -H). The i.r. spectrum of (4) (ν max 1685, 1615 cm⁻¹) was in accord with the presence of a conjugated-enone.

REFERENCES

1.	G.	Cimino,	S. d	e Stefano,	L.	Minale	and E,	Fattorusso,	Tetrahedron,	<u>27</u> ,	4673	(1971),
2.	G.	Cimino,	S. d	e Stefano,	L.	Minale	and E.	Fattorusso,	<u>Tetrahedron</u> ,	<u>28</u> ,	267	(1972).
з.	Е.	Fattorus	sso,	L. Minale,	G,	Sodano	and E.	Trivellone,	<u>Tetrahedron</u> ,	<u>27</u> ,	3909	(1971).
4.	G.	Cimino,	S. d	e Stefano;	L.	Minale,	, Exper	<u>ientia, 30</u> , 3	18 (1974).			
5.	For	the sal	ke of	consisten	су	the numb	bering	system adopte	ed in this pa	per i	follow	s the

numbering system presented in References 1 and 2.